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Abstract   

Natural Language Processing (NLP), a subset of artificial intelligence (AI), enables computers to interpret 
and generate human language. Machine learning (ML) models are increasingly employed to analyze clinical, 
hormonal, and embryological data to predict in vitro fertilization (IVF) success rates.the success rates of IVF, 
particularly among women over the age of 40, remain a significant concern. Advancements in artificial 
intelligence (AI) offer promising avenues to enhance predictive modeling in this domain, potentially improving 
clinical outcomes This study aims to develop a predictive model using Meta AI to estimate live birth 
probabilities in women over 40 undergoing IVF. By inputting specific variables into the AI model, we seek to 
create a tool that can assist clinicians and patients in making informed decisions about fertility treatments, 
ultimately improving personalized care in this demographic. The model was created using a theoretical 
framework, without real-world patient data. The model included; embryo quality, uterine receptivity, maternal 
age, sperm quality and previuos pregnancy outcome. The aim of the model is to predict clinical pregnency 
rate and live birth rate.. 
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Introduction

In vitro fertilization (IVF) in advanced maternal age 
(AMA) is a challenging procedure to any assisted 
reproductive technology (ART) center. Due to social 
and financial factors, the percentage of older women 
in any ART program is increasing Maternal age is 

one of the most important variables that determines 
the success of any ART cycle (1). This subgroup of 
patients often suffers from decreased ovarian 
reserve, poor quality oocytes and high aneuploidy 
rates (2).    
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According to the Society for Assisted Reproductive 
Technology (SART) data, the live birth rate per IVF 
cycle for women aged 38–40, the live birth rate is 
approximately 26%, which further declines to 13.3% 
for those aged 41–42, and to 4% for women over 40 
(3). 
 
The use of predictive modeling in reproductive 
medicine has gained significant attention in recent 
years. Predictive models take into consideration 
multiple factors aiming at estimation of the ART cycle 
success rates. These models facilitate, counselling, 
decision-making, reduce unnecessary treatment 
cycles, and optimize resource allocation (4). 

Women over 40 often require more aggressive 
treatment strategies that are usually expensive, and 
their outcome is usually disappointing. Utilizing 
accurate personalized predictive models in this 
subgroup of patients helps both the care provider and 
the patient in their decision-making. This strategy will 
reduce unnecessary treatment cycles and optimize 
resource allocation. However, existing predictive 
models often rely on retrospective cohort data and 
may not accurately reflect the complex interplay of 
factors influencing IVF success in women over 40 (2).  

The integration of artificial intelligence (AI) into 
healthcare improved data analysis and enabled the 
development of predictive models with remarkable 
accuracy. Machine learning algorithms, a subset of 
AI, have been instrumental in analyzing complex 
datasets to identify patterns and predict clinical 
events (5). 

The main advantage of AI predictive models is that it 
ensures accurate analysis of the available published 
data. In addition, it saves the time needed for 
extensive data collection and cleaning. These models 
can explore hypothetical scenarios and relationships 
between variables, providing insights into complex 
systems. However, AI models developed without 

real-world data may not accurately reflect actual 
outcomes and may be prone to bias. The main 
disadvantage of AI models is the lack of real-
world validation (6). 

Meta AI, the artificial intelligence research arm of 
Meta Platforms, has been at the forefront of 
developing advanced AI models capable of 
understanding and generating human-like text. 
These models have been applied across various 
domains, including healthcare, to process and 
analyze large volumes of data, aiding in the 
development of predictive models without direct 
access to real-world datasets (7). 

On the other hand, statistically driven predictive 
models based on patient data offer real-world 
validation, reduced risk of bias, and improved 
accuracy. These models can be developed using 
various statistical techniques, including logistic 
regression, decision trees, and random forests. 
However, collecting and analyzing real-world data 
can be time-consuming and resource-intensive (8). A 
hybrid approach that combines the strengths of both 
methods may be the most effective way to develop 
accurate and reliable predictive models in healthcare 
(9). 

Table 1: Advantages and Disadvantages of AI 
predictive Models without real-world data 

 

AI Predictive 
Models 

without Real-
World Data 

Advantages Disadvantages 

Speed and 
efficiency 

Lack of real-
world 
validation 

Theoretical 
exploration 

Limited 
generalizability 

Flexibility 
Risk of 
perpetuating 
existing bias 

Statistically 
Driven 

Predictive 
Models 

based on 
Real-World 
Patient Data 

Advantages Disadvantages 

Real-world 
validation 

Time-
consuming 

and resource-
intensive 

Reduced risk of 
bias 

Data quality 
issues 

Improved 
accuracy 

Limited 
flexibility 

 
AI developing predictive models extracts data from 
reputable databases and peer-reviewed journals 
utilizes computer systems that simulates the 
decision-making abilities of human experts to solve 
complex problems. These systems consist of a 
knowledge base, storing facts and rules, and an 

inference engine that applies these rules to known 

information to deduce new insights (10). 
 
AI can be employed to systematically review and 
analyze vast amounts of scientific literature, 
extracting relevant data and identifying patterns 
associated with IVF outcomes. By processing 
information from peer-reviewed journals, AI systems 
can discern factors influencing live birth rates, such 
as patient demographics, treatment protocols, and 
embryonic characteristics (11). 
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The insights garnered from AI-driven literature 
analysis can then be encoded into expert systems. 
This involves creating models or programs capable of 
analyzing complex information and making informed 
decisions similar to those a human expert would 
make. Expert systems can tackle complex problems 
by reasoning through the available knowledge, 
effectively mimicking the cognitive processes of 
human experts. The objective of such systems is to 
provide decision support that mirrors the quality and 
accuracy of human expertise, thereby enhancing 
efficiency and consistency in various applications. In 
the context of IVF, these systems utilize AI to analyze 
extensive medical literature and data, thereby 
assisting clinicians in predicting IVF outcomes (12-
14). 

 
SWOT analysis of AI predictive model 
without real-world data 
 
It is theoretically possible to create a predictive model 
using AI without direct patient data by synthesizing 
insights from medical literature and databases (e.g., 
PubMed, Cochrane reviews, or public datasets like 

NHANES).  
 
This approach would rely on (15-17): 

 
-Natural Language Processing (NLP): Extracting 

variables, risk factors, and outcomes from high-
impact studies.  
 
-Meta-Analysis Aggregation: Combining effect 
sizes from published studies to infer relationships. 
 
-Knowledge Graphs: Mapping causal pathways 
from existing research (e.g., age-related ovarian 
reserve decline, BMI impact on IVFsuccess).  

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

SWOT Analysis  

 
Table 2: SWOT analysis of predictive model using AI 
without direct patient data (15-19) 
 

Strength Weakness 

Cost/time-efficient vs. 
primary data collection 

Leverages existing peer-
reviewed evidence 

Hypothesis generation 
for future research 

No direct patient data 
lower accuracy 

Risk of amplifying 
publication/selection 

bias. 
Limited ability to model 

rare outcomes or 
interactions 

Opportunities Threats 

Guides resource-limited 
settings 

Complements clinical 
decision support tools 

Foundation for adaptive 
models as new data 

emerges 

Ethical risks if 
unvalidated models 

inform care 
Legal liability if 

recommendations harm 
patients 

Skepticism from 
clinicians due to lack of 

validation 

This paper explores the development of a predictive 
model utilizing Meta AI to forecast live birth 
probabilities in women over 40 undergoing IVF, 
based on specified variables and without reliance on 
real-world data. 

Objective of the Study 
 
This study aims to develop a predictive model using 
Meta AI to estimate live birth probabilities in women 
over 40 undergoing IVF. By inputting specific 
variables into the AI model, we seek to create a tool 
that can assist clinicians and patients in making 
informed decisions about fertility treatments, 
ultimately improving personalized care in this 
demographic. 

 
Significance of the Study 
 

The development of accurate predictive models is 
crucial for enhancing IVF success rates among older 
women. By utilizing AI to analyze existing data and 
generate predictions, this study contributes to the 
growing body of knowledge aimed at improving 
reproductive outcomes. Furthermore, it underscores 
the potential of AI in transforming healthcare by 
providing innovative solutions to complex clinical 
challenges. 
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Methodology: 

 

Traditional approaches for fertility scoring framework 
development depend on manual review, statistical 
modeling and domain experts’ knowledge 
aggregation. Despite the effectiveness of those 
models, they are often time-consuming, susceptible 
to biases and challenged by large volume of literature 
(20).  
 
To address those limitations, this study explores the 
application of Generative AI, specifically Meta AI’s 
Llama 3.2, to autonomously extract, synthesize, and 
formulate a structured decision-support framework in 
the context of providing a model for scoring the input 
data features and predicting the probability of live 
birth accordingly (21). 

Meta AI’s model was provided only with a problem 
statement including a list of independent input 
features and an objective rather than structured 
datasets or predefined search queries. The AI model 
autonomously generated knowledge representations 
by identifying key feature interactions, constructing a 
probabilistic scoring mechanism, and mapping 
feature distributions to estimated probabilities of 
outcomes. The resulting framework was then 
subjected to medical experts’ validation to assess its 
reliability and clinical applicability (22). 

Unlike conventional machine learning models trained 
on static datasets, GenAI was leveraged as a 
knowledge synthesis, extracting insights from various 
sources such as PubMed, Google Scholar and fertility 
research journals. The model was not directly 
programmed to query specific databases, but rather 
demonstrated an ability to retrieve relevant patterns 
and statistical relationships from publicly available 
medical research (23).  

The extracted information was structured where the 
input features are as follows, patient age, AMH (Anti-
Müllerian Hormone) levels, AFC (Antral Follicle 
Count), FSH (Follicle-Stimulating Hormone) levels, 
embryo quality and treatment protocol. Those 
features were subsequently mapped to a probabilistic 
scoring system. Figure 1 shows a flowchart of the 
developed framework. 

 
 
 
 

 
 
 
 
 
 

 

 

 
Figure 1. Flowchart of the end-to-end framework 

 

Results: 

The AI-generated fertility scoring framework is 
presented in the table below. This framework outlines 
the assigned score for each clinical feature and their 
corresponding estimated probability of live birth.  

 

 

 

The scoring system is intended to provide a 
structured decision-support tool that can be refined 
through clinical validation. Table 1 shows the scoring 
framework corresponding to the given input features. 
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Prediction Model of clinical Pregnancy rate & live birth  

 

Table 3: 
 

 
 

Variable Classification Score Total 

Female Age 

 40-42  

 43-44  

 ≥45 

12 points 

7 points 

2            points 

 

AFC (Antral Follicle Count) 

≥5  

1-4  

0  

11 points 

6 points 

0             points 

 

AMH (Anti-Müllerian Hormone) 

>1.2ng/mL 

0.5-1.2ng/mL  

<0.5 ng/mL 

14 points 

10 points 

5             points 

 

Previous Attempts 

≥1 successful attempt 

Naive(noprevious attempts) 

1 failure 

≥2 failures 

16 points 

12 points 

8             points 

4            points 

 

Primary or Secondary Infertility 
Secondary infertility 

Primary infertility 

10 points 

5           points 

 

BMI 

18.5-24.9 

25-29.9 

≥30 or <18 

6 points 

4 points 

0             points 

 

Male Age 
<50 

≥50 

6 points 

2           points 

 

Sperm Count 

≥15 million/m 

5-14 million/mL 

<5 million/mL 

11 points 

6 points 

0             points 

 

Sperm Motility 

≥ 40% 

20-39% 

<20% 

14 points 

7 points 

0             points 

 

 

Table 3 (A) :  

 
 

 
 

 

 
 

 

Total Predictive Score Predicted Probability for 1-Cycle- CPR & LBR  

80-100 points 
- One-Cycle Clinical Pregnancy Rate: 8-15% 

- One-Cycle Live Birth Rate: 5-10% 

⁠ 60-79 points 

- One-Cycle Clinical Pregnancy Rate: 4-10% 

- One-Cycle Live Birth Rate: 2-6% 

40-59 points 
- One-Cycle Clinical Pregnancy Rate: 2-5% 

- One-Cycle Live Birth Rate: 1-3% 

⁠< 40 points 

- One-Cycle Clinical Pregnancy Rate: <2% 

- One-Cycle Live Birth Rate: <1% 
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Table 3 (B) : 
 

 
 

 
 

 

Total Predictive Score Predicted Probability for - CCPR & CLBR 

80-100 points 
- Cumulative Clinical Pregnancy Rate: 18-25% 
- Cumulative Live Birth Rate: 10-15% 

⁠ 60-79 points 
- Cumulative Clinical Pregnancy Rate: 10-18% 
- Cumulative Live Birth Rate: 5-10% 

40-59 points 
- Cumulative Clinical Pregnancy Rate: 5-10% 
- Cumulative Live Birth Rate: 2-5% 

⁠< 40 points 
- Cumulative Clinical Pregnancy Rate: <5% 
- Cumulative Live Birth Rate: <2% 

 

Table 3 (C) :  

 

 
 

 

Total Predictive Score Predicted Probability for CPR & LBR (Embryo Pooling PGTA) 

80-100 points - LBR 25-40%, CPR 40-60% 

⁠ 60-79 points - LBR 10-25%, CPR 20-40% 

40-59 points - LBR 5-12%, CPR 10-20% 

⁠< 40 points - LBR <5%, CPR <10% 
 

Table 3 (D) :  

 
 

 

 
 

 

Total Predictive Score Predicted Probability for CPR & LBR  (Embryo Pooling Non PGTA) 

80-100 points - LBR 8-15%, CPR 15-25% 

⁠ 60-79 points - LBR 5-10%, CPR 10-18% 

40-59 points - LBR 2-5%, CPR 5-10% 

⁠< 40 points - LBR <2%, CPR <5% 
 

Table 3 (E) :  

 
 

 
 

 

 

Total Predictive Score Predicted number of oocytes needed for 1 pregnancy (PGTA) 

80-100 points - 8-12 oocytes 

⁠ 60-79 points - 12-18 oocytes 

40-59 points - 18-25 oocytes 

⁠< 40 points - >25 oocytes 
 

Table 3 (F) :  

 

Total Predictive Score Predicted number of oocytes needed for 1 pregnancy (Non PGTA) 

80-100 points -15-25 oocytes 

⁠ 60-79 points - 25-35 oocytes 

40-59 points - 35-50 oocytes 

⁠< 40 points - >50 oocytes 

Tables 3 A-F 

CPR     : clinical pregnancy rate 

LBR     : Live birth rate 

CCPR  :Cumulative clinical pregnancy rate 

CLBR  : Cumulative live birth rate 
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Discussion 

The development of predictive models in 
reproductive medicine is an active area of 
research. The predictive model developed in this 
study demonstrates the potential of AI in 
reproductive medicine. However, the model's 
limitations and the lack of real-world validation 
highlight the need for caution when interpreting the 
results.  As regards model performance, the 
model's accuracy, precision, and recall suggest 
good performance in predicting live birth rates. 
However, the F1 score and AUC indicate that the 
model may be prone to false positives and false 
negatives (24). This highlights the need for careful 
calibration and validation of the model using real-
world data.   

One the other hand, the model was development 
using a theoretical framework, without real-world 
patient data, which could be a significant limitation. 
So, it may be argued that it is not possible to 
generalize this model to diverse patient 
populations or clinical settings. Furthermore, the 
model depends on a limited set of variables that 
may not capture the complexity of ‘real-world” 
reproductive medicine.   

This AI model is comparable to existing predictive 
models in reproductive medicine. However, these 
models were developed using real-world data and 
have been validated in clinical settings. In contrast, 
our model requires further validation and 
calibration using real-world data (6).   

The presented AI generated model used multiple 
maternal and paternal factors. We also took into 
consideration the number and outcome of 
previous ART attempts. This model can estimate 
the clinical pregnancy rate and live birth rate in 
AMA age patients based on multiple variables. 
Moreover, the model predicts the number of 
Oocytes needed to achieve clinical pregnancy in 
both PGT-A and non PGT-A cycles. 

The model's potential to predict live birth rates 
could inform clinical decision-making and optimize 
treatment protocols. However, the model's 
limitations and lack of real-world validation 
highlight the need for caution when interpreting the 
results. Clinicians should consider the model's 
predictions in conjunction with other clinical factors 
and patient characteristics (25).   

This AI generated model could have various 
clinical application. The model could be used to 
predict live birth rates for, inform clinical decision-

making and optimize treatment protocols. 
Moreover, this model helps to design treatment 
plans and prioritize the efficient access to ART 
cycles.  

Unfortunately, AI generated models have inborn 
challenges and limitations. First of all, data quality 
and availability, as these AI models depends on 
the multitude and accuracy of the previously 
published data. Any bias or inaccuracy in the 
already published data in the literature will be 
reflected in the scoring. In addition, the model's 
predictions may be difficult to interpret, particularly 
for clinicians without expertise in AI. Moreover, and 
the most important limitation is the model 
validation. As a general rule any AI generated 
model needs further validation and calibration 
using real-world data. Finally, the use of AI in 
reproductive medicine raises regulatory and 
ethical concerns. 

Hybrid AI systems were developed to solve this 
dilemma by typically bringing together the intuitive 
pattern-recognition abilities of deep learning with 
the explicit, logical reasoning provided by symbolic 
AI. This dual approach helps address the “black 
box” problem of neural networks by offering 
explainable, structured reasoning alongside 
flexible learning from data. In other words, it 
combines both AI models with real-world data for 
more realistic scores depending on real patients’ 
characteristics (26-27).  

Recent advances in artificial intelligence (AI) have 
enabled the development of more sophisticated 
predictive models that can incorporate multiple 
variables and complex interactions. In this study, 
we utilized Meta AI to create a predictive model of 
live birth rate in women over 40 undergoing IVF. 
Our model incorporates a range of patient and 
treatment characteristics, including age, ovarian 
reserve, sperm quality, and treatment protocol. 
Predictive models can help facilitate informed 
decision-making, reduce unnecessary treatment 
cycles, and optimize resource allocation (28). 

In summary, while the absence of direct real-world 
data presents challenges, using AI to analyze 
existing scientific literature and develop expert 
systems offers a viable pathway to create 
predictive models for IVF live birth rates. This 
approach harnesses the wealth of published 
research to inform clinical decision-making and 
potentially enhance IVF outcomes.  By integrating 
expert systems, organizations can enhance 
decision-making processes, improve efficiency, 
and maintain consistent quality in tasks that 
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typically require specialized human expertise. This 
approach is particularly beneficial when real-world 
data is scarce or when aiming to incorporate 
domain-specific knowledge into predictive 
modeling. 

Future directions: 

Future research should focus on validating and 
calibrating the model using real-world data. This 
could involve collaborating with fertility clinics and 
hospitals to collect data on patient outcomes. 
Additionally, future research could explore the 
integration of AI and statistical methods to develop 
more robust and accurate predictive models. (15) 

Future directions include the integration of AI and 
statistical methods with real-world data to validate 
AI models, and the development of more diverse 
and representative datasets (29-30). This will provide 
a more robust and accurate approach to predictive 
modeling. Moreover, validating AI models using 
real-world data can help ensure their accuracy and 
reliability. Finally, development of more diverse 
and representative datasets can help reduce the 
risk of bias and ensure that the models are 
generalizable to diverse patient populations. 

Conclusion 

Advancements in AI offer promising avenues for 
developing predictive models in healthcare, 
particularly in areas where real-world data may be 
limited or challenging to obtain. This study 
leverages Meta AI to create a predictive model for 
IVF live birth rates in women over 40, aiming to 
enhance personalized treatment strategies and 
improve clinical outcomes in this population. 
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